Assumptions:
References:
- http://functions.wolfram.com/EllipticFunctions/ModularLambda/20/01/0001/ Note: because of the branch cut of the elliptic integral, only valid on part of the domain.
TeX:
\lambda'(\tau) = -\frac{4 i}{\pi} {\left(K\!\left(\lambda(\tau)\right)\right)}^{2} \left(\lambda(\tau) - 1\right) \lambda(\tau)
\tau \in \left\{ {\tau}_{1} + n : {\tau}_{1} \in \operatorname{Interior}(\mathcal{F}_{\lambda}) \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z} \right\}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| ComplexDerivative | Complex derivative | |
| ModularLambda | Modular lambda function | |
| ConstI | Imaginary unit | |
| Pi | The constant pi (3.14...) | |
| Pow | Power | |
| EllipticK | Legendre complete elliptic integral of the first kind | |
| ModularLambdaFundamentalDomain | Fundamental domain of the modular lambda function | |
| ZZ | Integers |
Source code for this entry:
Entry(ID("38b4f3"),
Formula(Equal(ComplexDerivative(ModularLambda(tau), For(tau, tau)), Mul(Mul(Mul(Neg(Div(Mul(4, ConstI), Pi)), Pow(EllipticK(ModularLambda(tau)), 2)), Sub(ModularLambda(tau), 1)), ModularLambda(tau)))),
Variables(tau),
Assumptions(Element(tau, Set(Add(Subscript(tau, 1), n), For(Tuple(Subscript(tau, 1), n)), And(Element(Subscript(tau, 1), Interior(ModularLambdaFundamentalDomain)), Element(n, ZZ))))),
References("http://functions.wolfram.com/EllipticFunctions/ModularLambda/20/01/0001/ Note: because of the branch cut of the elliptic integral, only valid on part of the domain."))