Assumptions:
TeX:
\frac{d^{r}}{{d \tau}^{r}} \theta^{(s)}_{j}\!\left(z , \tau\right) = \frac{1}{{\left(4 \pi i\right)}^{r}} \theta^{(2 r + s)}_{j}\!\left(z , \tau\right) j \in \left\{1, 2, 3, 4\right\} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H} \;\mathbin{\operatorname{and}}\; r \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; s \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
ComplexDerivative | Complex derivative | |
JacobiTheta | Jacobi theta function | |
Pow | Power | |
Pi | The constant pi (3.14...) | |
ConstI | Imaginary unit | |
CC | Complex numbers | |
HH | Upper complex half-plane | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("37e644"), Formula(Equal(ComplexDerivative(JacobiTheta(j, z, tau, s), For(tau, tau, r)), Mul(Div(1, Pow(Mul(Mul(4, Pi), ConstI), r)), JacobiTheta(j, z, tau, Add(Mul(2, r), s))))), Variables(j, z, tau, r, s), Assumptions(And(Element(j, Set(1, 2, 3, 4)), Element(z, CC), Element(tau, HH), Element(r, ZZGreaterEqual(0)), Element(s, ZZGreaterEqual(0)))))