Assumptions:
TeX:
\log \Gamma(z) = \left(z - \frac{1}{2}\right) \log(z) - z + \frac{\log\!\left(2 \pi\right)}{2} + \sum_{k=1}^{n - 1} \frac{B_{2 k}}{2 k \left(2 k - 1\right) {z}^{2 k - 1}} + R_{n}\!\left(z\right) z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \notin \left(-\infty, 0\right] \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 1}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
LogGamma | Logarithmic gamma function | |
Log | Natural logarithm | |
Pi | The constant pi (3.14...) | |
Sum | Sum | |
BernoulliB | Bernoulli number | |
Pow | Power | |
StirlingSeriesRemainder | Remainder term in the Stirling series for the logarithmic gamma function | |
CC | Complex numbers | |
OpenClosedInterval | Open-closed interval | |
Infinity | Positive infinity | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("37a95a"), Formula(Equal(LogGamma(z), Add(Add(Add(Sub(Mul(Sub(z, Div(1, 2)), Log(z)), z), Div(Log(Mul(2, Pi)), 2)), Sum(Div(BernoulliB(Mul(2, k)), Mul(Mul(Mul(2, k), Sub(Mul(2, k), 1)), Pow(z, Sub(Mul(2, k), 1)))), For(k, 1, Sub(n, 1)))), StirlingSeriesRemainder(n, z)))), Variables(z, n), Assumptions(And(Element(z, CC), NotElement(z, OpenClosedInterval(Neg(Infinity), 0)), Element(n, ZZGreaterEqual(1)))))