Assumptions:
TeX:
\frac{d}{d z}\, \frac{\theta_{3}\!\left(z , \tau\right)}{\theta_{4}\!\left(z , \tau\right)} = -\pi \theta_{2}^{2}\!\left(0, \tau\right) \frac{\theta_{1}\!\left(z , \tau\right) \theta_{2}\!\left(z , \tau\right)}{\theta_{4}^{2}\!\left(z, \tau\right)} z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
MeromorphicDerivative | Complex derivative, allowing poles | |
JacobiTheta | Jacobi theta function | |
Pi | The constant pi (3.14...) | |
Pow | Power | |
CC | Complex numbers | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("378949"), Formula(Equal(MeromorphicDerivative(Div(JacobiTheta(3, z, tau), JacobiTheta(4, z, tau)), For(z, z)), Neg(Mul(Mul(Pi, Pow(JacobiTheta(2, 0, tau), 2)), Div(Mul(JacobiTheta(1, z, tau), JacobiTheta(2, z, tau)), Pow(JacobiTheta(4, z, tau), 2)))))), Variables(z, tau), Assumptions(And(Element(z, CC), Element(tau, HH))))