Assumptions:
References:
- L. Schoenfeld (1976). Sharper bounds for the Chebyshev functions θ(x) and ψ(x). II. Mathematics of Computation. 30 (134): 337-360. DOI: 10.2307/2005976
TeX:
\left|\pi\!\left(x\right) - \operatorname{li}\!\left(x\right)\right| \lt \frac{\sqrt{x} \log\!\left(x\right)}{8 \pi}
x \in \mathbb{R} \,\mathbin{\operatorname{and}}\, x \ge 2657 \,\mathbin{\operatorname{and}}\, \operatorname{RiemannHypothesis}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Abs | Absolute value | |
| PrimePi | Prime counting function | |
| LogIntegral | Logarithmic integral | |
| Sqrt | Principal square root | |
| Log | Natural logarithm | |
| ConstPi | The constant pi (3.14...) | |
| RR | Real numbers | |
| RiemannHypothesis | Riemann hypothesis |
Source code for this entry:
Entry(ID("375afe"),
Formula(Less(Abs(Sub(PrimePi(x), LogIntegral(x))), Div(Mul(Sqrt(x), Log(x)), Mul(8, ConstPi)))),
Variables(x),
Assumptions(And(Element(x, RR), GreaterEqual(x, 2657), RiemannHypothesis)),
References("L. Schoenfeld (1976). Sharper bounds for the Chebyshev functions θ(x) and ψ(x). II. Mathematics of Computation. 30 (134): 337-360. DOI: 10.2307/2005976"))