Assumptions:
TeX:
\left(x \equiv y \pmod {\varphi(n)}\right) \;\implies\; \left({a}^{x} \equiv {a}^{y} \pmod {n}\right) a \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \gcd\!\left(a, n\right) = 1 \;\mathbin{\operatorname{and}}\; x \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; y \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Totient | Euler totient function | |
Pow | Power | |
ZZ | Integers | |
ZZGreaterEqual | Integers greater than or equal to n | |
GCD | Greatest common divisor |
Source code for this entry:
Entry(ID("36fe36"), Formula(Implies(CongruentMod(x, y, Totient(n)), CongruentMod(Pow(a, x), Pow(a, y), n))), Variables(a, x, y, n), Assumptions(And(Element(a, ZZ), Element(n, ZZGreaterEqual(1)), Equal(GCD(a, n), 1), Element(x, ZZGreaterEqual(0)), Element(y, ZZGreaterEqual(0)))))