Assumptions:
TeX:
\operatorname{erfc}(z) = \frac{2}{\sqrt{\pi}} \int_{z}^{\infty} {e}^{-{t}^{2}} \, dt
z \in \mathbb{C}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Erfc | Complementary error function | |
| Sqrt | Principal square root | |
| Pi | The constant pi (3.14...) | |
| Integral | Integral | |
| Exp | Exponential function | |
| Pow | Power | |
| Infinity | Positive infinity | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("36ef64"),
Formula(Equal(Erfc(z), Mul(Div(2, Sqrt(Pi)), Integral(Exp(Neg(Pow(t, 2))), For(t, z, Infinity))))),
Variables(z),
Assumptions(Element(z, CC)))