Assumptions:
TeX:
\operatorname{erfc}(z) = \frac{2}{\sqrt{\pi}} \int_{z}^{\infty} {e}^{-{t}^{2}} \, dt z \in \mathbb{C}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Erfc | Complementary error function | |
Sqrt | Principal square root | |
Pi | The constant pi (3.14...) | |
Integral | Integral | |
Exp | Exponential function | |
Pow | Power | |
Infinity | Positive infinity | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("36ef64"), Formula(Equal(Erfc(z), Mul(Div(2, Sqrt(Pi)), Integral(Exp(Neg(Pow(t, 2))), For(t, z, Infinity))))), Variables(z), Assumptions(Element(z, CC)))