Assumptions:
TeX:
\left(n + 1\right) P_{n + 1}\!\left(z\right) - \left(2 n + 1\right) z P_{n}\!\left(z\right) + n P_{n - 1}\!\left(z\right) = 0 n \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
LegendrePolynomial | Legendre polynomial | |
ZZGreaterEqual | Integers greater than or equal to n | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("367ac2"), Formula(Equal(Add(Sub(Mul(Add(n, 1), LegendrePolynomial(Add(n, 1), z)), Mul(Mul(Add(Mul(2, n), 1), z), LegendrePolynomial(n, z))), Mul(n, LegendrePolynomial(Sub(n, 1), z))), 0)), Variables(n, z), Assumptions(And(Element(n, ZZGreaterEqual(1)), Element(z, CC))))