Assumptions:
TeX:
\psi^{(m)}\!\left(1 - z\right) = {\left(-1\right)}^{m} \left(\psi^{(m)}\!\left(z\right) + \pi \frac{d^{m}}{{d z}^{m}} \cot\!\left(\pi z\right)\right)
m \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \notin \mathbb{Z}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| DigammaFunction | Digamma function | |
| Pow | Power | |
| Pi | The constant pi (3.14...) | |
| ComplexDerivative | Complex derivative | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| CC | Complex numbers | |
| ZZ | Integers |
Source code for this entry:
Entry(ID("361f61"),
Formula(Equal(DigammaFunction(Sub(1, z), m), Mul(Pow(-1, m), Add(DigammaFunction(z, m), Mul(Pi, ComplexDerivative(Cot(Mul(Pi, z)), For(z, z, m))))))),
Variables(m, z),
Assumptions(And(Element(m, ZZGreaterEqual(0)), Element(z, CC), NotElement(z, ZZ))))