Fungrim home page

Fungrim entry: 361f61

ψ(m) ⁣(1z)=(1)m(ψ(m) ⁣(z)+πdmdzmcot ⁣(πz))\psi^{(m)}\!\left(1 - z\right) = {\left(-1\right)}^{m} \left(\psi^{(m)}\!\left(z\right) + \pi \frac{d^{m}}{{d z}^{m}} \cot\!\left(\pi z\right)\right)
Assumptions:mZ0  and  zC  and  zZm \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \notin \mathbb{Z}
TeX:
\psi^{(m)}\!\left(1 - z\right) = {\left(-1\right)}^{m} \left(\psi^{(m)}\!\left(z\right) + \pi \frac{d^{m}}{{d z}^{m}} \cot\!\left(\pi z\right)\right)

m \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \notin \mathbb{Z}
Definitions:
Fungrim symbol Notation Short description
DigammaFunctionψ ⁣(z)\psi\!\left(z\right) Digamma function
Powab{a}^{b} Power
Piπ\pi The constant pi (3.14...)
ComplexDerivativeddzf ⁣(z)\frac{d}{d z}\, f\!\left(z\right) Complex derivative
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
CCC\mathbb{C} Complex numbers
ZZZ\mathbb{Z} Integers
Source code for this entry:
Entry(ID("361f61"),
    Formula(Equal(DigammaFunction(Sub(1, z), m), Mul(Pow(-1, m), Add(DigammaFunction(z, m), Mul(Pi, ComplexDerivative(Cot(Mul(Pi, z)), For(z, z, m))))))),
    Variables(m, z),
    Assumptions(And(Element(m, ZZGreaterEqual(0)), Element(z, CC), NotElement(z, ZZ))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC