Assumptions:
TeX:
{\operatorname{atan}}^{(n)}(z) = \frac{{\left(-1\right)}^{n} \left(n - 1\right)!}{2 i} \left(\frac{1}{{\left(z + i\right)}^{n}} - \frac{1}{{\left(z - i\right)}^{n}}\right) n \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; i z \notin \left(-\infty, -1\right] \cup \left[1, \infty\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
ComplexDerivative | Complex derivative | |
Atan | Inverse tangent | |
Pow | Power | |
Factorial | Factorial | |
ConstI | Imaginary unit | |
ZZGreaterEqual | Integers greater than or equal to n | |
CC | Complex numbers | |
OpenClosedInterval | Open-closed interval | |
Infinity | Positive infinity | |
ClosedOpenInterval | Closed-open interval |
Source code for this entry:
Entry(ID("36171f"), Formula(Equal(ComplexDerivative(Atan(z), For(z, z, n)), Mul(Div(Mul(Pow(-1, n), Factorial(Sub(n, 1))), Mul(2, ConstI)), Sub(Div(1, Pow(Add(z, ConstI), n)), Div(1, Pow(Sub(z, ConstI), n)))))), Variables(z, n), Assumptions(And(Element(n, ZZGreaterEqual(1)), Element(z, CC), NotElement(Mul(ConstI, z), Union(OpenClosedInterval(Neg(Infinity), -1), ClosedOpenInterval(1, Infinity))))))