Assumptions:
TeX:
U'_{n}(x) = \frac{\left(n + 1\right) T_{n + 1}\!\left(x\right) - x U_{n}\!\left(x\right)}{{x}^{2} - 1}
n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C} \setminus \left\{-1, 1\right\}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| ComplexDerivative | Complex derivative | |
| ChebyshevU | Chebyshev polynomial of the second kind | |
| ChebyshevT | Chebyshev polynomial of the first kind | |
| Pow | Power | |
| ZZ | Integers | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("35e13b"),
Formula(Equal(ComplexDerivative(ChebyshevU(n, x), For(x, x)), Div(Sub(Mul(Add(n, 1), ChebyshevT(Add(n, 1), x)), Mul(x, ChebyshevU(n, x))), Sub(Pow(x, 2), 1)))),
Variables(n, x),
Assumptions(And(Element(n, ZZ), Element(x, SetMinus(CC, Set(-1, 1))))))