Assumptions:
References:
- https://dx.doi.org/10.1098/rspa.2014.0534
TeX:
\log G\!\left(x + 1\right) > \left(\frac{{x}^{2}}{2} - \frac{1}{12}\right) \log(x) - \frac{3 {x}^{2}}{4} + \frac{\log\!\left(2 \pi\right)}{2} x + \frac{1}{12} - \log(A) - \frac{1}{240 {x}^{2}}
x \in \left(0, \infty\right)Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| LogBarnesG | Logarithmic Barnes G-function | |
| Pow | Power | |
| Log | Natural logarithm | |
| Pi | The constant pi (3.14...) | |
| OpenInterval | Open interval | |
| Infinity | Positive infinity |
Source code for this entry:
Entry(ID("3544a0"),
Formula(Greater(LogBarnesG(Add(x, 1)), Sub(Sub(Add(Add(Sub(Mul(Sub(Div(Pow(x, 2), 2), Div(1, 12)), Log(x)), Div(Mul(3, Pow(x, 2)), 4)), Mul(Div(Log(Mul(2, Pi)), 2), x)), Div(1, 12)), Log(ConstGlaisher)), Div(1, Mul(240, Pow(x, 2)))))),
Variables(x),
Assumptions(Element(x, OpenInterval(0, Infinity))),
References("https://dx.doi.org/10.1098/rspa.2014.0534"))