Assumptions:
TeX:
\sigma\!\left(z + 1, \tau\right) = -\exp\!\left(2 \left(z + \frac{1}{2}\right) \zeta\!\left(\frac{1}{2}, \tau\right)\right) \sigma\!\left(z, \tau\right)
z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| WeierstrassSigma | Weierstrass sigma function | |
| Exp | Exponential function | |
| WeierstrassZeta | Weierstrass zeta function | |
| CC | Complex numbers | |
| HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("35403b"),
Formula(Equal(WeierstrassSigma(Add(z, 1), tau), Neg(Mul(Exp(Mul(Mul(2, Add(z, Div(1, 2))), WeierstrassZeta(Div(1, 2), tau))), WeierstrassSigma(z, tau))))),
Variables(z, tau),
Assumptions(And(Element(z, CC), Element(tau, HH))))