Fungrim home page

Fungrim entry: 35403b

σ ⁣(z+1,τ)=exp ⁣(2(z+12)ζ ⁣(12,τ))σ ⁣(z,τ)\sigma\!\left(z + 1, \tau\right) = -\exp\!\left(2 \left(z + \frac{1}{2}\right) \zeta\!\left(\frac{1}{2}, \tau\right)\right) \sigma\!\left(z, \tau\right)
Assumptions:zC  and  τHz \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}
TeX:
\sigma\!\left(z + 1, \tau\right) = -\exp\!\left(2 \left(z + \frac{1}{2}\right) \zeta\!\left(\frac{1}{2}, \tau\right)\right) \sigma\!\left(z, \tau\right)

z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}
Definitions:
Fungrim symbol Notation Short description
WeierstrassSigmaσ ⁣(z,τ)\sigma\!\left(z, \tau\right) Weierstrass sigma function
Expez{e}^{z} Exponential function
WeierstrassZetaζ ⁣(z,τ)\zeta\!\left(z, \tau\right) Weierstrass zeta function
CCC\mathbb{C} Complex numbers
HHH\mathbb{H} Upper complex half-plane
Source code for this entry:
Entry(ID("35403b"),
    Formula(Equal(WeierstrassSigma(Add(z, 1), tau), Neg(Mul(Exp(Mul(Mul(2, Add(z, Div(1, 2))), WeierstrassZeta(Div(1, 2), tau))), WeierstrassSigma(z, tau))))),
    Variables(z, tau),
    Assumptions(And(Element(z, CC), Element(tau, HH))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC