Assumptions:
TeX:
\sigma\!\left(z + 1, \tau\right) = -\exp\!\left(2 \left(z + \frac{1}{2}\right) \zeta\!\left(\frac{1}{2}, \tau\right)\right) \sigma\!\left(z, \tau\right) z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
WeierstrassSigma | Weierstrass sigma function | |
Exp | Exponential function | |
WeierstrassZeta | Weierstrass zeta function | |
CC | Complex numbers | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("35403b"), Formula(Equal(WeierstrassSigma(Add(z, 1), tau), Neg(Mul(Exp(Mul(Mul(2, Add(z, Div(1, 2))), WeierstrassZeta(Div(1, 2), tau))), WeierstrassSigma(z, tau))))), Variables(z, tau), Assumptions(And(Element(z, CC), Element(tau, HH))))