Assumptions:
TeX:
j'(\tau) = -2 \pi i \frac{E_{6}\!\left(\tau\right)}{E_{4}\!\left(\tau\right)} j(\tau) \tau \in \mathbb{H} \;\mathbin{\operatorname{and}}\; E_{4}\!\left(\tau\right) \ne 0
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
ComplexDerivative | Complex derivative | |
ModularJ | Modular j-invariant | |
Pi | The constant pi (3.14...) | |
ConstI | Imaginary unit | |
EisensteinE | Normalized Eisenstein series | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("348b26"), Formula(Equal(ComplexDerivative(ModularJ(tau), For(tau, tau)), Mul(Mul(Neg(Mul(Mul(2, Pi), ConstI)), Div(EisensteinE(6, tau), EisensteinE(4, tau))), ModularJ(tau)))), Variables(tau), Assumptions(And(Element(tau, HH), NotEqual(EisensteinE(4, tau), 0))))