References:
- J. M. Borwein and P. B. Borwein. Pi and the AGM. Wiley, New York, 1987.
TeX:
\sum_{n=1}^{\infty} \frac{{\left(-1\right)}^{n + 1}}{F_{n} F_{n + 1}} = \frac{\sqrt{5} - 1}{2}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Sum | Sum | |
| Pow | Power | |
| Fibonacci | Fibonacci number | |
| Infinity | Positive infinity | |
| Sqrt | Principal square root |
Source code for this entry:
Entry(ID("344963"),
Formula(Equal(Sum(Div(Pow(-1, Add(n, 1)), Mul(Fibonacci(n), Fibonacci(Add(n, 1)))), For(n, 1, Infinity)), Div(Sub(Sqrt(5), 1), 2))),
References("J. M. Borwein and P. B. Borwein. Pi and the AGM. Wiley, New York, 1987."))