Fungrim home page

Fungrim entry: 343946

log ⁣(Bn)nlog(n)log ⁣(log(n))1+log ⁣(log(n))log(n)+1log(n)+12(log ⁣(log(n))log(n))2,  n\frac{\log\!\left(B_{n}\right)}{n} \sim \log(n) - \log\!\left(\log(n)\right) - 1 + \frac{\log\!\left(\log(n)\right)}{\log(n)} + \frac{1}{\log(n)} + \frac{1}{2} {\left(\frac{\log\!\left(\log(n)\right)}{\log(n)}\right)}^{2}, \; n \to \infty
\frac{\log\!\left(B_{n}\right)}{n} \sim \log(n) - \log\!\left(\log(n)\right) - 1 + \frac{\log\!\left(\log(n)\right)}{\log(n)} + \frac{1}{\log(n)} + \frac{1}{2} {\left(\frac{\log\!\left(\log(n)\right)}{\log(n)}\right)}^{2}, \; n \to \infty
Fungrim symbol Notation Short description
Loglog(z)\log(z) Natural logarithm
BellNumberBnB_{n} Bell number
Powab{a}^{b} Power
Infinity\infty Positive infinity
Source code for this entry:
    Formula(AsymptoticTo(Div(Log(BellNumber(n)), n), Add(Add(Add(Sub(Sub(Log(n), Log(Log(n))), 1), Div(Log(Log(n)), Log(n))), Div(1, Log(n))), Mul(Div(1, 2), Pow(Div(Log(Log(n)), Log(n)), 2))), n, Infinity)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC