Fungrim home page

Fungrim entry: 33f13a

G(n)={k=1n2k!,n10,n0G(n) = \begin{cases} \prod_{k=1}^{n - 2} k !, & n \ge 1\\0, & n \le 0\\ \end{cases}
Assumptions:nZn \in \mathbb{Z}
TeX:
G(n) = \begin{cases} \prod_{k=1}^{n - 2} k !, & n \ge 1\\0, & n \le 0\\ \end{cases}

n \in \mathbb{Z}
Definitions:
Fungrim symbol Notation Short description
BarnesGG(z)G(z) Barnes G-function
Productnf(n)\prod_{n} f(n) Product
Factorialn!n ! Factorial
ZZZ\mathbb{Z} Integers
Source code for this entry:
Entry(ID("33f13a"),
    Formula(Equal(BarnesG(n), Cases(Tuple(Product(Factorial(k), For(k, 1, Sub(n, 2))), GreaterEqual(n, 1)), Tuple(0, LessEqual(n, 0))))),
    Variables(n),
    Assumptions(Element(n, ZZ)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC