Assumptions:
References:
- https://doi.org/10.1016/0022-0728(88)87001-3
TeX:
\int_{0}^{\infty} {e}^{-a t} \theta'_{1}\!\left(x , i b t\right) \, dt = \frac{2 \pi}{b} \frac{\cosh\!\left(2 x \sqrt{\frac{\pi a}{b}}\right)}{\cosh\!\left(\sqrt{\frac{\pi a}{b}}\right)} a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(a) > 0 \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(b) > 0 \;\mathbin{\operatorname{and}}\; x \in \left(-\frac{1}{2}, \frac{1}{2}\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Integral | Integral | |
Exp | Exponential function | |
JacobiTheta | Jacobi theta function | |
ConstI | Imaginary unit | |
Infinity | Positive infinity | |
Pi | The constant pi (3.14...) | |
Sqrt | Principal square root | |
CC | Complex numbers | |
Re | Real part | |
OpenInterval | Open interval |
Source code for this entry:
Entry(ID("321538"), Formula(Equal(Integral(Mul(Exp(Mul(Neg(a), t)), JacobiTheta(1, x, Mul(Mul(ConstI, b), t), 1)), For(t, 0, Infinity)), Mul(Div(Mul(2, Pi), b), Div(Cosh(Mul(Mul(2, x), Sqrt(Div(Mul(Pi, a), b)))), Cosh(Sqrt(Div(Mul(Pi, a), b))))))), Variables(a, b, x), Assumptions(And(Element(a, CC), Greater(Re(a), 0), Element(b, CC), Greater(Re(b), 0), Element(x, OpenInterval(Neg(Div(1, 2)), Div(1, 2))))), References("https://doi.org/10.1016/0022-0728(88)87001-3"))