Assumptions:
TeX:
\mathop{\operatorname{solution}\,}\limits_{w \in \left[-1, \infty\right)} \left[w {e}^{w} = x\right] = W_{0}\!\left(x\right)
x \in \left[-\frac{1}{e}, \infty\right)Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Exp | Exponential function | |
| ClosedOpenInterval | Closed-open interval | |
| Infinity | Positive infinity | |
| LambertW | Lambert W-function | |
| ConstE | The constant e (2.718...) |
Source code for this entry:
Entry(ID("314807"),
Formula(Equal(UniqueSolution(Brackets(Equal(Mul(w, Exp(w)), x)), w, Element(w, ClosedOpenInterval(-1, Infinity))), LambertW(0, x))),
Variables(x),
Assumptions(Element(x, ClosedOpenInterval(Neg(Div(1, ConstE)), Infinity))))