Fungrim home page

Fungrim entry: 305a29

Tn ⁣(x)=2n1k=1n(xcos ⁣(2k12nπ))T_{n}\!\left(x\right) = {2}^{n - 1} \prod_{k=1}^{n} \left(x - \cos\!\left(\frac{2 k - 1}{2 n} \pi\right)\right)
Assumptions:nZ1andxCn \in \mathbb{Z}_{\ge 1} \,\mathbin{\operatorname{and}}\, x \in \mathbb{C}
TeX:
T_{n}\!\left(x\right) = {2}^{n - 1} \prod_{k=1}^{n} \left(x - \cos\!\left(\frac{2 k - 1}{2 n} \pi\right)\right)

n \in \mathbb{Z}_{\ge 1} \,\mathbin{\operatorname{and}}\, x \in \mathbb{C}
Definitions:
Fungrim symbol Notation Short description
ChebyshevTTn ⁣(x)T_{n}\!\left(x\right) Chebyshev polynomial of the first kind
Powab{a}^{b} Power
ConstPiπ\pi The constant pi (3.14...)
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
CCC\mathbb{C} Complex numbers
Source code for this entry:
Entry(ID("305a29"),
    Formula(Equal(ChebyshevT(n, x), Mul(Pow(2, Sub(n, 1)), Product(Parentheses(Sub(x, Cos(Mul(Div(Sub(Mul(2, k), 1), Mul(2, n)), ConstPi)))), Tuple(k, 1, n))))),
    Variables(n, x),
    Assumptions(And(Element(n, ZZGreaterEqual(1)), Element(x, CC))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC