Assumptions:
TeX:
T_{n}\!\left(x\right) = {2}^{n - 1} \prod_{k=1}^{n} \left(x - \cos\!\left(\frac{2 k - 1}{2 n} \pi\right)\right)
n \in \mathbb{Z}_{\ge 1} \,\mathbin{\operatorname{and}}\, x \in \mathbb{C}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| ChebyshevT | Chebyshev polynomial of the first kind | |
| Pow | Power | |
| ConstPi | The constant pi (3.14...) | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("305a29"),
Formula(Equal(ChebyshevT(n, x), Mul(Pow(2, Sub(n, 1)), Product(Parentheses(Sub(x, Cos(Mul(Div(Sub(Mul(2, k), 1), Mul(2, n)), ConstPi)))), Tuple(k, 1, n))))),
Variables(n, x),
Assumptions(And(Element(n, ZZGreaterEqual(1)), Element(x, CC))))