Assumptions:
TeX:
T_{n}\!\left(x\right) = {2}^{n - 1} \prod_{k=1}^{n} \left(x - \cos\!\left(\frac{2 k - 1}{2 n} \pi\right)\right) n \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevT | Chebyshev polynomial of the first kind | |
Pow | Power | |
Product | Product | |
Cos | Cosine | |
Pi | The constant pi (3.14...) | |
ZZGreaterEqual | Integers greater than or equal to n | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("305a29"), Formula(Equal(ChebyshevT(n, x), Mul(Pow(2, Sub(n, 1)), Product(Parentheses(Sub(x, Cos(Mul(Div(Sub(Mul(2, k), 1), Mul(2, n)), Pi)))), For(k, 1, n))))), Variables(n, x), Assumptions(And(Element(n, ZZGreaterEqual(1)), Element(x, CC))))