Assumptions:
TeX:
H^{\omega}_{\ell,\eta}\!\left(z\right) = \frac{F_{\ell,\eta}\!\left(z\right) {e}^{\omega i \chi} - F_{-\ell - 1,\eta}\!\left(z\right)}{\sin\!\left(\chi\right)}\; \text{ where } \chi = \sigma_{\ell}\!\left(\eta\right) - \sigma_{-\ell - 1}\!\left(\eta\right) - \left(\ell + \frac{1}{2}\right) \pi \omega \in \left\{-1, 1\right\} \,\mathbin{\operatorname{and}}\, \ell \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \eta \in \mathbb{C} \,\mathbin{\operatorname{and}}\, 2 \ell \notin \mathbb{Z} \,\mathbin{\operatorname{and}}\, 1 + \ell + i \eta \notin \{0, -1, \ldots\} \,\mathbin{\operatorname{and}}\, 1 + \ell - i \eta \notin \{0, -1, \ldots\} \,\mathbin{\operatorname{and}}\, -\ell + i \eta \notin \{0, -1, \ldots\} \,\mathbin{\operatorname{and}}\, -\ell - i \eta \notin \{0, -1, \ldots\} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
CoulombH | Outgoing and ingoing Coulomb wave function | |
CoulombF | Regular Coulomb wave function | |
Exp | Exponential function | |
ConstI | Imaginary unit | |
Sin | Sine | |
CoulombSigma | Coulomb wave function phase shift | |
ConstPi | The constant pi (3.14...) | |
CC | Complex numbers | |
ZZ | Integers | |
ZZLessEqual | Integers less than or equal to n |
Source code for this entry:
Entry(ID("304559"), Formula(Where(Equal(CoulombH(omega, ell, eta, z), Div(Sub(Mul(CoulombF(ell, eta, z), Exp(Mul(Mul(omega, ConstI), chi))), CoulombF(Sub(Neg(ell), 1), eta, z)), Sin(chi))), Equal(chi, Sub(Sub(CoulombSigma(ell, eta), CoulombSigma(Sub(Neg(ell), 1), eta)), Mul(Add(ell, Div(1, 2)), ConstPi))))), Variables(omega, ell, eta, z), Assumptions(And(Element(omega, Set(-1, 1)), Element(ell, CC), Element(eta, CC), NotElement(Mul(2, ell), ZZ), NotElement(Add(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0)), NotElement(Sub(Add(1, ell), Mul(ConstI, eta)), ZZLessEqual(0)), NotElement(Add(Neg(ell), Mul(ConstI, eta)), ZZLessEqual(0)), NotElement(Sub(Neg(ell), Mul(ConstI, eta)), ZZLessEqual(0)), Element(z, SetMinus(CC, Set(0))))))