d'Ocagne's identity
Assumptions:
TeX:
F_{m} F_{n + 1} - F_{m + 1} F_{n} = {\left(-1\right)}^{n} F_{m - n}
n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; m \in \mathbb{Z}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Fibonacci | Fibonacci number | |
| Pow | Power | |
| ZZ | Integers |
Source code for this entry:
Entry(ID("301081"),
Formula(Equal(Sub(Mul(Fibonacci(m), Fibonacci(Add(n, 1))), Mul(Fibonacci(Add(m, 1)), Fibonacci(n))), Mul(Pow(-1, n), Fibonacci(Sub(m, n))))),
Description("d'Ocagne's identity"),
Variables(n, m),
Assumptions(And(Element(n, ZZ), Element(m, ZZ))))