Assumptions:
TeX:
\theta_{3}\!\left(z , \tau\right) = \sum_{n=-\infty}^{\infty} {q}^{{n}^{2}} {w}^{2 n}\; \text{ where } q = {e}^{\pi i \tau},\;w = {e}^{\pi i z} z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
JacobiTheta | Jacobi theta function | |
Sum | Sum | |
Pow | Power | |
Infinity | Positive infinity | |
Exp | Exponential function | |
Pi | The constant pi (3.14...) | |
ConstI | Imaginary unit | |
CC | Complex numbers | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("2f97f5"), Formula(Equal(JacobiTheta(3, z, tau), Where(Sum(Mul(Pow(q, Pow(n, 2)), Pow(w, Mul(2, n))), For(n, Neg(Infinity), Infinity)), Equal(q, Exp(Mul(Mul(Pi, ConstI), tau))), Equal(w, Exp(Mul(Mul(Pi, ConstI), z)))))), Variables(z, tau), Assumptions(And(Element(z, CC), Element(tau, HH))))