Assumptions:
References:
- F. K. C. Rankin and H. P. F. Swinnerton-Dyer, On the zeros of Eisenstein Series, Bull. London Math. Soc., 2(1970),169-170.
TeX:
\mathop{\operatorname{zeros}\,}\limits_{\tau \in \mathcal{F}} E_{2 k}\!\left(\tau\right) \subset \left\{ {e}^{i \theta} : \theta \in \left[\frac{\pi}{2}, \frac{2 \pi}{3}\right] \right\}
k \in \mathbb{Z}_{\ge 2}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Zeros | Zeros (roots) of function | |
| EisensteinE | Normalized Eisenstein series | |
| ModularGroupFundamentalDomain | Fundamental domain for action of the modular group | |
| Exp | Exponential function | |
| ConstI | Imaginary unit | |
| ClosedInterval | Closed interval | |
| Pi | The constant pi (3.14...) | |
| ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("2f6805"),
Formula(Subset(Zeros(EisensteinE(Mul(2, k), tau), ForElement(tau, ModularGroupFundamentalDomain)), Set(Exp(Mul(ConstI, theta)), ForElement(theta, ClosedInterval(Div(Pi, 2), Div(Mul(2, Pi), 3)))))),
Variables(k),
Assumptions(And(Element(k, ZZGreaterEqual(2)))),
References("F. K. C. Rankin and H. P. F. Swinnerton-Dyer, On the zeros of Eisenstein Series, Bull. London Math. Soc., 2(1970),169-170."))