Assumptions:
TeX:
\theta_{1}\!\left(\frac{n}{4} , i\right) = \begin{cases} 0, & n \equiv 0 \pmod {4}\\{\left(-1\right)}^{\left\lfloor n / 4 \right\rfloor} \theta_{4}\!\left(0 , i\right), & n \equiv 2 \pmod {4}\\{\left(-1\right)}^{\left\lfloor n / 4 \right\rfloor} \left[{2}^{-7 / 16} \sqrt{\sqrt{2} - 1} {\left(\sqrt{2} + 1\right)}^{1 / 4}\right] \theta_{3}\!\left(0 , i\right), & \text{otherwise}\\ \end{cases} n \in \mathbb{Z}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
JacobiTheta | Jacobi theta function | |
ConstI | Imaginary unit | |
Pow | Power | |
Sqrt | Principal square root | |
ZZ | Integers |
Source code for this entry:
Entry(ID("2f3ed3"), Formula(Equal(JacobiTheta(1, Div(n, 4), ConstI), Cases(Tuple(0, CongruentMod(n, 0, 4)), Tuple(Mul(Pow(-1, Floor(Div(n, 4))), JacobiTheta(4, 0, ConstI)), CongruentMod(n, 2, 4)), Tuple(Mul(Mul(Pow(-1, Floor(Div(n, 4))), Brackets(Mul(Mul(Pow(2, Neg(Div(7, 16))), Sqrt(Sub(Sqrt(2), 1))), Pow(Add(Sqrt(2), 1), Div(1, 4))))), JacobiTheta(3, 0, ConstI)), Otherwise)))), Variables(n), Assumptions(Element(n, ZZ)))