Fungrim home page

Fungrim entry: 2e0d99

z1/2=1z{z}^{-1 / 2} = \frac{1}{\sqrt{z}}
Assumptions:zC{0}z \in \mathbb{C} \setminus \left\{0\right\}
TeX:
{z}^{-1 / 2} = \frac{1}{\sqrt{z}}

z \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol Notation Short description
Powab{a}^{b} Power
Sqrtz\sqrt{z} Principal square root
CCC\mathbb{C} Complex numbers
Source code for this entry:
Entry(ID("2e0d99"),
    Formula(Equal(Pow(z, Neg(Div(1, 2))), Div(1, Sqrt(z)))),
    Variables(z),
    Assumptions(Element(z, SetMinus(CC, Set(0)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC