Fungrim home page

Fungrim entry: 2d3356

{W0 ⁣(z):zCR}={x+yi:y(π,π){0}andx(ycot ⁣(y),)}\left\{ W_{0}\!\left(z\right) : z \in \mathbb{C} \setminus \mathbb{R} \right\} = \left\{ x + y i : y \in \left(-\pi, \pi\right) \setminus \left\{0\right\} \,\mathbin{\operatorname{and}}\, x \in \left(-y \cot\!\left(y\right), \infty\right) \right\}
TeX:
\left\{ W_{0}\!\left(z\right) : z \in \mathbb{C} \setminus \mathbb{R} \right\} = \left\{ x + y i : y \in \left(-\pi, \pi\right) \setminus \left\{0\right\} \,\mathbin{\operatorname{and}}\, x \in \left(-y \cot\!\left(y\right), \infty\right) \right\}
Definitions:
Fungrim symbol Notation Short description
SetBuilder{f ⁣(x):P ⁣(x)}\left\{ f\!\left(x\right) : P\!\left(x\right) \right\} Set comprehension
LambertWWk ⁣(z)W_{k}\!\left(z\right) Lambert W-function
CCC\mathbb{C} Complex numbers
RRR\mathbb{R} Real numbers
ConstIii Imaginary unit
OpenInterval(a,b)\left(a, b\right) Open interval
ConstPiπ\pi The constant pi (3.14...)
Infinity\infty Positive infinity
Source code for this entry:
Entry(ID("2d3356"),
    Formula(Equal(SetBuilder(LambertW(0, z), z, Element(z, SetMinus(CC, RR))), SetBuilder(Add(x, Mul(y, ConstI)), Tuple(x, y), And(Element(y, SetMinus(OpenInterval(Neg(ConstPi), ConstPi), Set(0))), Element(x, OpenInterval(Mul(Neg(y), Cot(y)), Infinity)))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC