Assumptions:
TeX:
\theta_{3}\!\left(z + \frac{1}{2} \tau , \tau\right) = {e}^{-\pi i \left(z + \tau / 4\right)} \theta_{2}\!\left(z , \tau\right)
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| JacobiTheta | Jacobi theta function | |
| Exp | Exponential function | |
| Pi | The constant pi (3.14...) | |
| ConstI | Imaginary unit | |
| CC | Complex numbers | |
| HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("2d2dde"),
Formula(Equal(JacobiTheta(3, Add(z, Mul(Div(1, 2), tau)), tau), Mul(Exp(Neg(Mul(Mul(Pi, ConstI), Add(z, Div(tau, 4))))), JacobiTheta(2, z, tau)))),
Variables(z, tau),
Assumptions(And(Element(z, CC), Element(tau, HH))))