Assumptions:
TeX:
\int_{-1}^{1} T_{n}\!\left(x\right) T_{m}\!\left(x\right) \frac{1}{\sqrt{1 - {x}^{2}}} \, dx = \frac{\pi}{2} \left(\delta_{(n,m)} + \delta_{(n,0)} \delta_{(m,0)}\right) n \in \mathbb{Z}_{\ge 0} \,\mathbin{\operatorname{and}}\, m \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevT | Chebyshev polynomial of the first kind | |
Sqrt | Principal square root | |
Pow | Power | |
ConstPi | The constant pi (3.14...) | |
KroneckerDelta | Kronecker delta | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("2c26a1"), Formula(Equal(Integral(Mul(Mul(ChebyshevT(n, x), ChebyshevT(m, x)), Div(1, Sqrt(Sub(1, Pow(x, 2))))), Tuple(x, -1, 1)), Mul(Div(ConstPi, 2), Add(KroneckerDelta(n, m), Mul(KroneckerDelta(n, 0), KroneckerDelta(m, 0)))))), Variables(n, m), Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(m, ZZGreaterEqual(0)))))