Assumptions:
TeX:
\int_{-1}^{1} T_{n}\!\left(x\right) T_{m}\!\left(x\right) \frac{1}{\sqrt{1 - {x}^{2}}} \, dx = \begin{cases} 0, & n \ne m\\\pi, & n = m = 0\\\frac{\pi}{2}, & n = m \;\mathbin{\operatorname{and}}\; n \ne 0\\ \end{cases} n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; m \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Integral | Integral | |
ChebyshevT | Chebyshev polynomial of the first kind | |
Sqrt | Principal square root | |
Pow | Power | |
Pi | The constant pi (3.14...) | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("2c26a1"), Formula(Equal(Integral(Mul(Mul(ChebyshevT(n, x), ChebyshevT(m, x)), Div(1, Sqrt(Sub(1, Pow(x, 2))))), For(x, -1, 1)), Cases(Tuple(0, NotEqual(n, m)), Tuple(Pi, Equal(n, m, 0)), Tuple(Div(Pi, 2), And(Equal(n, m), NotEqual(n, 0)))))), Variables(n, m), Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(m, ZZGreaterEqual(0)))))