Assumptions:
TeX:
\sum_{n=0}^{\infty} {2 n \choose n} {x}^{n} = \frac{1}{\sqrt{1 - 4 x}}
x \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \left|x\right| \lt \frac{1}{4}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Binomial | Binomial coefficient | |
| Pow | Power | |
| Infinity | Positive infinity | |
| Sqrt | Principal square root | |
| CC | Complex numbers | |
| Abs | Absolute value |
Source code for this entry:
Entry(ID("2b2066"),
Formula(Equal(Sum(Mul(Binomial(Mul(2, n), n), Pow(x, n)), Tuple(n, 0, Infinity)), Div(1, Sqrt(Sub(1, Mul(4, x)))))),
Variables(x),
Assumptions(And(Element(x, CC), Less(Abs(x), Div(1, 4)))))