Assumptions:
TeX:
\theta^{(r)}_{1}\!\left(z , \tau\right) = -i {\left(\pi i\right)}^{r} {e}^{\pi i \tau / 4} \sum_{n=-\infty}^{\infty} {\left(-1\right)}^{n} {\left(2 n + 1\right)}^{r} {q}^{n \left(n + 1\right)} {w}^{2 n + 1}\; \text{ where } q = {e}^{\pi i \tau},\;w = {e}^{\pi i z} z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H} \;\mathbin{\operatorname{and}}\; r \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
JacobiTheta | Jacobi theta function | |
ConstI | Imaginary unit | |
Pow | Power | |
Pi | The constant pi (3.14...) | |
Exp | Exponential function | |
Sum | Sum | |
Infinity | Positive infinity | |
CC | Complex numbers | |
HH | Upper complex half-plane | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("2ae142"), Formula(Equal(JacobiTheta(1, z, tau, r), Where(Mul(Mul(Mul(Neg(ConstI), Pow(Mul(Pi, ConstI), r)), Exp(Div(Mul(Mul(Pi, ConstI), tau), 4))), Sum(Mul(Mul(Mul(Pow(-1, n), Pow(Add(Mul(2, n), 1), r)), Pow(q, Mul(n, Add(n, 1)))), Pow(w, Add(Mul(2, n), 1))), For(n, Neg(Infinity), Infinity))), Equal(q, Exp(Mul(Mul(Pi, ConstI), tau))), Equal(w, Exp(Mul(Mul(Pi, ConstI), z)))))), Variables(z, tau, r), Assumptions(And(Element(z, CC), Element(tau, HH), Element(r, ZZGreaterEqual(0)))))