Assumptions:
TeX:
\chi_{{q}_{1} {q}_{2} \, . \, \ell} = \chi_{{q}_{1} \, . \, \ell \bmod {q}_{1}} \chi_{{q}_{2} \, . \, \ell \bmod {q}_{2}} {q}_{1} \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; {q}_{2} \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \ell \in \{1, 2, \ldots, \max\!\left({q}_{1} {q}_{2}, 2\right) - 1\} \;\mathbin{\operatorname{and}}\; \gcd\!\left(\ell, {q}_{1}\right) = \gcd\!\left(\ell, {q}_{2}\right) = \gcd\!\left({q}_{1}, {q}_{2}\right) = 1
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
DirichletCharacter | Dirichlet character | |
ZZGreaterEqual | Integers greater than or equal to n | |
Range | Integers between given endpoints | |
GCD | Greatest common divisor |
Source code for this entry:
Entry(ID("2a48bd"), Formula(Equal(DirichletCharacter(Mul(Subscript(q, 1), Subscript(q, 2)), ell), Mul(DirichletCharacter(Subscript(q, 1), Mod(ell, Subscript(q, 1))), DirichletCharacter(Subscript(q, 2), Mod(ell, Subscript(q, 2)))))), Variables(Subscript(q, 1), Subscript(q, 2), ell), Assumptions(And(Element(Subscript(q, 1), ZZGreaterEqual(1)), Element(Subscript(q, 2), ZZGreaterEqual(1)), Element(ell, Range(1, Sub(Max(Mul(Subscript(q, 1), Subscript(q, 2)), 2), 1))), Equal(GCD(ell, Subscript(q, 1)), GCD(ell, Subscript(q, 2)), GCD(Subscript(q, 1), Subscript(q, 2)), 1))))