Assumptions:
TeX:
Y_{\nu}\!\left(z\right) = \frac{\cos\!\left(\pi \nu\right) J_{\nu}\!\left(z\right) - J_{-\nu}\!\left(z\right)}{\sin\!\left(\pi \nu\right)} \nu \in \mathbb{C} \setminus \mathbb{Z} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
BesselY | Bessel function of the second kind | |
Cos | Cosine | |
Pi | The constant pi (3.14...) | |
BesselJ | Bessel function of the first kind | |
Sin | Sine | |
CC | Complex numbers | |
ZZ | Integers |
Source code for this entry:
Entry(ID("2a4195"), Formula(Equal(BesselY(nu, z), Div(Sub(Mul(Cos(Mul(Pi, nu)), BesselJ(nu, z)), BesselJ(Neg(nu), z)), Sin(Mul(Pi, nu))))), Variables(nu, z), Assumptions(And(Element(nu, SetMinus(CC, ZZ)), Element(z, SetMinus(CC, Set(0))))))