Assumptions:
TeX:
\theta_{4}\!\left(z , \tau\right) = \prod_{n=1}^{\infty} \left(1 - {q}^{2 n}\right) \left(1 - 2 {q}^{2 n - 1} \cos\!\left(2 \pi z\right) + {q}^{4 n - 2}\right)\; \text{ where } q = {e}^{\pi i \tau} z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
JacobiTheta | Jacobi theta function | |
Product | Product | |
Pow | Power | |
Cos | Cosine | |
Pi | The constant pi (3.14...) | |
Infinity | Positive infinity | |
Exp | Exponential function | |
ConstI | Imaginary unit | |
CC | Complex numbers | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("2a2a38"), Formula(Equal(JacobiTheta(4, z, tau), Where(Product(Mul(Sub(1, Pow(q, Mul(2, n))), Add(Sub(1, Mul(Mul(2, Pow(q, Sub(Mul(2, n), 1))), Cos(Mul(Mul(2, Pi), z)))), Pow(q, Sub(Mul(4, n), 2)))), For(n, 1, Infinity)), Equal(q, Exp(Mul(Mul(Pi, ConstI), tau)))))), Variables(z, tau), Assumptions(And(Element(z, CC), Element(tau, HH))))