Fungrim home page

Fungrim entry: 2991b5

K ⁣((322)2)=(2+2)(Γ ⁣(14))216πK\!\left({\left(3 - 2 \sqrt{2}\right)}^{2}\right) = \frac{\left(2 + \sqrt{2}\right) {\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{2}}{16 \sqrt{\pi}}
TeX:
K\!\left({\left(3 - 2 \sqrt{2}\right)}^{2}\right) = \frac{\left(2 + \sqrt{2}\right) {\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{2}}{16 \sqrt{\pi}}
Definitions:
Fungrim symbol Notation Short description
EllipticKK(m)K(m) Legendre complete elliptic integral of the first kind
Powab{a}^{b} Power
Sqrtz\sqrt{z} Principal square root
GammaΓ(z)\Gamma(z) Gamma function
Piπ\pi The constant pi (3.14...)
Source code for this entry:
Entry(ID("2991b5"),
    Formula(Equal(EllipticK(Pow(Sub(3, Mul(2, Sqrt(2))), 2)), Div(Mul(Add(2, Sqrt(2)), Pow(Gamma(Div(1, 4)), 2)), Mul(16, Sqrt(Pi))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC