Fungrim home page

Fungrim entry: 29741c

Table of (n)k\left(n\right)_{k} for 0n100 \le n \le 10 and 0k100 \le k \le 10
nn \ kk 012345678910
010000000000
11126241207205040403203628803628800
212624120720504040320362880362880039916800
3131260360252020160181440181440019958400239500800
414201208406720604806048006652800798336001037836800
515302101680151201512001663200199584002594592003632428800
6164233630243024033264039916805189184072648576010897286400
717565045040554406652808648640121080960181621440029059430400
81872720792095040123552017297280259459200415134720070572902400
91990990118801544402162160324324005189184008821612800158789030400
1011011013201716024024036036005765760098017920017643225600335221286400
Table data: (n,k,y)\left(n, k, y\right) such that (n)k=y\left(n\right)_{k} = y
Definitions:
Fungrim symbol Notation Short description
RisingFactorial(z)k\left(z\right)_{k} Rising factorial
Source code for this entry:
Entry(ID("29741c"),
    Description("Table of", RisingFactorial(n, k), "for", LessEqual(0, n, 10), "and", LessEqual(0, k, 10)),
    Table(TableRelation(Tuple(n, k, y), Equal(RisingFactorial(n, k), y)), TableHeadings(Description(n, "\", k), 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), TableColumnHeadings(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), List(Tuple(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Tuple(1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800), Tuple(1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800), Tuple(1, 3, 12, 60, 360, 2520, 20160, 181440, 1814400, 19958400, 239500800), Tuple(1, 4, 20, 120, 840, 6720, 60480, 604800, 6652800, 79833600, 1037836800), Tuple(1, 5, 30, 210, 1680, 15120, 151200, 1663200, 19958400, 259459200, 3632428800), Tuple(1, 6, 42, 336, 3024, 30240, 332640, 3991680, 51891840, 726485760, 10897286400), Tuple(1, 7, 56, 504, 5040, 55440, 665280, 8648640, 121080960, 1816214400, 29059430400), Tuple(1, 8, 72, 720, 7920, 95040, 1235520, 17297280, 259459200, 4151347200, 70572902400), Tuple(1, 9, 90, 990, 11880, 154440, 2162160, 32432400, 518918400, 8821612800, 158789030400), Tuple(1, 10, 110, 1320, 17160, 240240, 3603600, 57657600, 980179200, 17643225600, 335221286400))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC