Assumptions:
TeX:
\frac{1}{L\!\left(s, \chi\right)} = \sum_{n=1}^{\infty} \frac{\mu(n) \chi(n)}{{n}^{s}} q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q} \;\mathbin{\operatorname{and}}\; s \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(s) > 1
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
DirichletL | Dirichlet L-function | |
Sum | Sum | |
MoebiusMu | Möbius function | |
Pow | Power | |
Infinity | Positive infinity | |
ZZGreaterEqual | Integers greater than or equal to n | |
DirichletGroup | Dirichlet characters with given modulus | |
CC | Complex numbers | |
Re | Real part |
Source code for this entry:
Entry(ID("291569"), Formula(Equal(Div(1, DirichletL(s, chi)), Sum(Div(Mul(MoebiusMu(n), chi(n)), Pow(n, s)), For(n, 1, Infinity)))), Variables(q, chi, s), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, DirichletGroup(q)), Element(s, CC), Greater(Re(s), 1))))