Assumptions:
TeX:
\theta_{3}^{2}\!\left(0, \tau\right) - \theta_{3}^{2}\!\left(0, 2 \tau\right) = \sum_{n=0}^{\infty} r_{2}\!\left(2 n + 1\right) {q}^{2 n + 1}\; \text{ where } q = {e}^{\pi i \tau}
\tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Pow | Power | |
| JacobiTheta | Jacobi theta function | |
| Sum | Sum | |
| SquaresR | Sum of squares function | |
| Infinity | Positive infinity | |
| Exp | Exponential function | |
| Pi | The constant pi (3.14...) | |
| ConstI | Imaginary unit | |
| HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("290f36"),
Formula(Equal(Sub(Pow(JacobiTheta(3, 0, tau), 2), Pow(JacobiTheta(3, 0, Mul(2, tau)), 2)), Where(Sum(Mul(SquaresR(2, Add(Mul(2, n), 1)), Pow(q, Add(Mul(2, n), 1))), For(n, 0, Infinity)), Equal(q, Exp(Mul(Mul(Pi, ConstI), tau)))))),
Variables(tau),
Assumptions(Element(tau, HH)))