Assumptions:
TeX:
\Lambda\!\left(s, \chi\right) = \varepsilon \Lambda\!\left(1 - s, \overline{\chi}\right)\; \text{ where } a = \frac{1 - \chi(-1)}{2},\;\varepsilon = \frac{G_{q}\!\left(\chi\right)}{{i}^{a} \sqrt{q}} q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G^{\text{Primitive}}_{q} \;\mathbin{\operatorname{and}}\; s \in \mathbb{C}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
DirichletLambda | Completed Dirichlet L-function | |
Conjugate | Complex conjugate | |
GaussSum | Gauss sum | |
Pow | Power | |
ConstI | Imaginary unit | |
Sqrt | Principal square root | |
ZZGreaterEqual | Integers greater than or equal to n | |
PrimitiveDirichletCharacters | Primitive Dirichlet characters with given modulus | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("288207"), Formula(Equal(DirichletLambda(s, chi), Where(Mul(epsilon, DirichletLambda(Sub(1, s), Conjugate(chi))), Equal(a, Div(Sub(1, chi(-1)), 2)), Equal(epsilon, Div(GaussSum(q, chi), Mul(Pow(ConstI, a), Sqrt(q))))))), Variables(q, chi, s), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, PrimitiveDirichletCharacters(q)), Element(s, CC))))