Assumptions:
TeX:
\frac{\sin\!\left(\pi \left(b - a\right)\right)}{\pi} \,{}_2{\textbf F}_1\!\left(a, b, c, z\right) = \frac{{\left(1 - z\right)}^{-a}}{\Gamma(b) \Gamma\!\left(c - a\right)} \,{}_2{\textbf F}_1\!\left(a, c - b, a - b + 1, \frac{1}{1 - z}\right) - \frac{{\left(1 - z\right)}^{-b}}{\Gamma(a) \Gamma\!\left(c - b\right)} \,{}_2{\textbf F}_1\!\left(b, c - a, b - a + 1, \frac{1}{1 - z}\right) a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; c \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \notin \left[0, \infty\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Sin | Sine | |
Pi | The constant pi (3.14...) | |
Hypergeometric2F1Regularized | Regularized Gauss hypergeometric function | |
Pow | Power | |
Gamma | Gamma function | |
CC | Complex numbers | |
ClosedOpenInterval | Closed-open interval | |
Infinity | Positive infinity |
Source code for this entry:
Entry(ID("27bc34"), Formula(Equal(Mul(Div(Sin(Mul(Pi, Sub(b, a))), Pi), Hypergeometric2F1Regularized(a, b, c, z)), Sub(Mul(Div(Pow(Sub(1, z), Neg(a)), Mul(Gamma(b), Gamma(Sub(c, a)))), Hypergeometric2F1Regularized(a, Sub(c, b), Add(Sub(a, b), 1), Div(1, Sub(1, z)))), Mul(Div(Pow(Sub(1, z), Neg(b)), Mul(Gamma(a), Gamma(Sub(c, b)))), Hypergeometric2F1Regularized(b, Sub(c, a), Add(Sub(b, a), 1), Div(1, Sub(1, z))))))), Variables(a, b, c, z), Assumptions(And(Element(a, CC), Element(b, CC), Element(c, CC), Element(z, CC), NotElement(z, ClosedOpenInterval(0, Infinity)))))