Assumptions:
TeX:
\lambda'(\tau) = \frac{\pi i}{3} \left(E_{2}\!\left(\frac{\tau}{2}\right) + 8 E_{2}\!\left(2 \tau\right) - 6 E_{2}\!\left(\tau\right)\right) \lambda(\tau) \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
ComplexDerivative | Complex derivative | |
ModularLambda | Modular lambda function | |
Pi | The constant pi (3.14...) | |
ConstI | Imaginary unit | |
EisensteinE | Normalized Eisenstein series | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("27b2c7"), Formula(Equal(ComplexDerivative(ModularLambda(tau), For(tau, tau)), Mul(Mul(Div(Mul(Pi, ConstI), 3), Sub(Add(EisensteinE(2, Div(tau, 2)), Mul(8, EisensteinE(2, Mul(2, tau)))), Mul(6, EisensteinE(2, tau)))), ModularLambda(tau)))), Variables(tau), Assumptions(Element(tau, HH)))