Assumptions:
TeX:
\sum_{n=1}^{\infty} T_{n}\!\left(x\right) \frac{{z}^{n}}{n} = -\frac{1}{2} \log\!\left(1 - 2 x z + {z}^{2}\right)
x \in \left[-1, 1\right] \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left|z\right| < 1Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Sum | Sum | |
| ChebyshevT | Chebyshev polynomial of the first kind | |
| Pow | Power | |
| Infinity | Positive infinity | |
| Log | Natural logarithm | |
| ClosedInterval | Closed interval | |
| CC | Complex numbers | |
| Abs | Absolute value |
Source code for this entry:
Entry(ID("27b2bb"),
Formula(Equal(Sum(Mul(ChebyshevT(n, x), Div(Pow(z, n), n)), For(n, 1, Infinity)), Mul(Neg(Div(1, 2)), Log(Add(Sub(1, Mul(Mul(2, x), z)), Pow(z, 2)))))),
Variables(x, z),
Assumptions(And(Element(x, ClosedInterval(-1, 1)), Element(z, CC), Less(Abs(z), 1))))