Assumptions:
TeX:
\left(1 - {z}^{2}\right) P''_{n}(z) - 2 z P'_{n}(z) + n \left(n + 1\right) P_{n}\!\left(z\right) = 0
n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Pow | Power | |
| ComplexDerivative | Complex derivative | |
| LegendrePolynomial | Legendre polynomial | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("27688e"),
Formula(Equal(Add(Sub(Mul(Sub(1, Pow(z, 2)), ComplexDerivative(LegendrePolynomial(n, z), For(z, z, 2))), Mul(Mul(2, z), ComplexDerivative(LegendrePolynomial(n, z), For(z, z, 1)))), Mul(Mul(n, Add(n, 1)), LegendrePolynomial(n, z))), 0)),
Variables(n, z),
Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(z, CC))))