Assumptions:
TeX:
\gcd\!\left(\prod_{k=1}^{m} p_{k}^{{e}_{k}}, \prod_{k=1}^{m} p_{k}^{{f}_{k}}\right) = \prod_{k=1}^{m} p_{k}^{\min\left({e}_{k}, {f}_{k}\right)}
{e}_{k} \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; {f}_{k} \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; m \in \mathbb{Z}_{\ge 0}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| GCD | Greatest common divisor | |
| Product | Product | |
| Pow | Power | |
| PrimeNumber | nth prime number | |
| ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("25986e"),
Formula(Equal(GCD(Product(Pow(PrimeNumber(k), Subscript(e, k)), For(k, 1, m)), Product(Pow(PrimeNumber(k), Subscript(f, k)), For(k, 1, m))), Product(Pow(PrimeNumber(k), Min(Subscript(e, k), Subscript(f, k))), For(k, 1, m)))),
Variables(e, f, m),
Assumptions(And(Element(Subscript(e, k), ZZGreaterEqual(0)), Element(Subscript(f, k), ZZGreaterEqual(0)), Element(m, ZZGreaterEqual(0)))))