Assumptions:
TeX:
\gcd\!\left(\prod_{k=1}^{m} p_{k}^{{e}_{k}}, \prod_{k=1}^{m} p_{k}^{{f}_{k}}\right) = \prod_{k=1}^{m} p_{k}^{\min\left({e}_{k}, {f}_{k}\right)} {e}_{k} \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; {f}_{k} \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; m \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
GCD | Greatest common divisor | |
Product | Product | |
Pow | Power | |
PrimeNumber | nth prime number | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("25986e"), Formula(Equal(GCD(Product(Pow(PrimeNumber(k), Subscript(e, k)), For(k, 1, m)), Product(Pow(PrimeNumber(k), Subscript(f, k)), For(k, 1, m))), Product(Pow(PrimeNumber(k), Min(Subscript(e, k), Subscript(f, k))), For(k, 1, m)))), Variables(e, f, m), Assumptions(And(Element(Subscript(e, k), ZZGreaterEqual(0)), Element(Subscript(f, k), ZZGreaterEqual(0)), Element(m, ZZGreaterEqual(0)))))