Fungrim home page

Fungrim entry: 25435b

RC ⁣(1,1)=2log ⁣(1+2)2π24iR_C\!\left(1, -1\right) = \frac{\sqrt{2} \log\!\left(1 + \sqrt{2}\right)}{2} - \frac{\pi \sqrt{2}}{4} i
TeX:
R_C\!\left(1, -1\right) = \frac{\sqrt{2} \log\!\left(1 + \sqrt{2}\right)}{2} - \frac{\pi \sqrt{2}}{4} i
Definitions:
Fungrim symbol Notation Short description
CarlsonRCRC ⁣(x,y)R_C\!\left(x, y\right) Degenerate Carlson symmetric elliptic integral of the first kind
Sqrtz\sqrt{z} Principal square root
Loglog(z)\log(z) Natural logarithm
Piπ\pi The constant pi (3.14...)
ConstIii Imaginary unit
Source code for this entry:
Entry(ID("25435b"),
    Formula(Equal(CarlsonRC(1, -1), Sub(Div(Mul(Sqrt(2), Log(Add(1, Sqrt(2)))), 2), Mul(Div(Mul(Pi, Sqrt(2)), 4), ConstI)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC