Fungrim home page

Fungrim entry: 250a45

lcm ⁣(r,s)=rs\operatorname{lcm}\!\left(r, s\right) = \left|r s\right|
Assumptions:rZandsZandgcd ⁣(r,s)=1r \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, s \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, \gcd\!\left(r, s\right) = 1
TeX:
\operatorname{lcm}\!\left(r, s\right) = \left|r s\right|

r \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, s \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, \gcd\!\left(r, s\right) = 1
Definitions:
Fungrim symbol Notation Short description
LCMlcm ⁣(a,b)\operatorname{lcm}\!\left(a, b\right) Least common multiple
Absz\left|z\right| Absolute value
ZZZ\mathbb{Z} Integers
GCDgcd ⁣(n,k)\gcd\!\left(n, k\right) Greatest common divisor
Source code for this entry:
Entry(ID("250a45"),
    Formula(Equal(LCM(r, s), Abs(Mul(r, s)))),
    Variables(r, s),
    Assumptions(And(Element(r, ZZ), Element(s, ZZ), Equal(GCD(r, s), 1))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC