Assumptions:
TeX:
\psi^{(m)}\!\left(z\right) = \frac{{\left(-1\right)}^{m + 1}}{m !} \left(\frac{1}{m {z}^{m}} + \frac{1}{2 {z}^{m + 1}} + \sum_{n=1}^{N - 1} \frac{\left(m + 1\right)_{2 n - 1}}{\left(2 n\right)!} \frac{B_{2 n}}{{z}^{m + 2 n}}\right) + {R}^{(m + 1)}_{N}(z) m \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left(-\infty, 0\right] \;\mathbin{\operatorname{and}}\; N \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
DigammaFunction | Digamma function | |
Pow | Power | |
Factorial | Factorial | |
Sum | Sum | |
RisingFactorial | Rising factorial | |
BernoulliB | Bernoulli number | |
Derivative | Derivative | |
StirlingSeriesRemainder | Remainder term in the Stirling series for the logarithmic gamma function | |
ZZGreaterEqual | Integers greater than or equal to n | |
CC | Complex numbers | |
OpenClosedInterval | Open-closed interval | |
Infinity | Positive infinity |
Source code for this entry:
Entry(ID("24c9e9"), Formula(Equal(DigammaFunction(z, m), Add(Mul(Div(Pow(-1, Add(m, 1)), Factorial(m)), Add(Add(Div(1, Mul(m, Pow(z, m))), Div(1, Mul(2, Pow(z, Add(m, 1))))), Sum(Mul(Div(RisingFactorial(Add(m, 1), Sub(Mul(2, n), 1)), Factorial(Mul(2, n))), Div(BernoulliB(Mul(2, n)), Pow(z, Add(m, Mul(2, n))))), For(n, 1, Sub(N, 1))))), Derivative(StirlingSeriesRemainder(N, z), For(z, z, Add(m, 1)))))), Variables(m, z, N), Assumptions(And(Element(m, ZZGreaterEqual(1)), Element(z, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))), Element(N, ZZGreaterEqual(0)))))